Dynamical-system models of transport: chaos characteristics, the macroscopic limit, and irreversibility
نویسندگان
چکیده
The escape-rate formalism and the thermostating algorithm describe relaxation towards a decaying state with absorbing boundaries and a steady state of periodic systems, respectively. It has been shown that the key features of the transport properties of both approaches, if modeled by low-dimensional dynamical systems, can conveniently be described in the framework of multibaker maps. In the present paper we discuss in detail the steps required to reach a meaningful macroscopic limit. The limit involves a sequence of coarser and coarser descriptions (projections) until one reaches the level of irreversible macroscopic advection–diffusion equations. The influence of boundary conditions is studied in detail. Only a few of the chaos characteristics possess a meaningful macroscopic limit, but none of these is sufficient to determine the entropy production in a general non-equilibrium state. © 2003 Elsevier B.V. All rights reserved. PACS: 05.70.Ln; 05.45.+b; 05.20.−y; 51.10.+y
منابع مشابه
CONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM
We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...
متن کاملDiscretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos
This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...
متن کاملDynamical behavior and synchronization of chaotic chemical reactors model
In this paper, we discuss the dynamical properties of a chemical reactor model including Lyapunov exponents, bifurcation, stability of equilibrium and chaotic attractors as well as necessary conditions for this system to generate chaos. We study the synchronization of chemical reactors model via sliding mode control scheme. The stability of proposed method is proved by Barbalate’s lemma. Numeri...
متن کاملDynamical behavior and synchronization of hyperchaotic complex T-system
In this paper, we introduce a new hyperchaotic complex T-system. This system has complex nonlinear behavior which we study its dynamical properties including invariance, equilibria and their stability, Lyapunov exponents, bifurcation, chaotic behavior and chaotic attractors as well as necessary conditions for this system to generate chaos. We discuss the synchronization with certain and uncerta...
متن کاملEffective Theories for Circuits and Automata
Abstracting an effective theory from a complicated process is central to the study of complexity. Even when the underlying mechanisms are understood, or at least measurable, the presence of dissipation and irreversibility in biological, computational, and social systems makes the problem harder. Here, we demonstrate the construction of effective theories in the presence of both irreversibility ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003